Analysis of the USRP2 Firmware: system architecture overview

J. Johansen, S. Enevoldsen, V. Pucci, O. Tonelli, A.F. Cattoni, Y. Le Moullec - Aalborg University, Denmark
Context

- **Ettus Research** Universal Software Radio Peripheral (USRP) is one of the most popular Software Defined Radio motherboards
 - Affordable costs
 - Compatibility with the **GNU Radio** software platform
 - Support for a wide range of inter-changeable RF daughterboards
 - **USB/Gigabit Ethernet** connection with host computers

- Several models have been developed
 - USRP - first release, USB connection
 - USRP2 - introduced GbEth connection
 - USRP N-series - increased FPGA resource
 - USRP E-series - standalone SDR device
Motivation

- The USRPs in their factory configuration feature a firmware which enables basic capabilities on the hardware
 - Up/down-sampling of the RF signal
 - Filtering
 - Management of data timestamp
 - Management of UDP packets on the GbE connection to the host
- Considerable hardware resources (especially on the new N-series) are left unused
- Implementation of processing features on the FPGA may be a valuable improvement to specific SDR systems
- An hardware implementation compatible with the provided firmware is preferable
- Lack of documentation about the USRP firmware architecture
Contribution

- Analysis of the existing USRP2 firmware
 - Architecture overview and schemes
 - Analysis of Verilog components

Notes:
Firmware analysis relates to the release 3
Same architecture applies to USRP2 and N-series
General architecture
Main firmware components

- GMII - Gigabit Media Independent Interface
- GE-MAC - Gigabit Ethernet Media Access Controller
- Softcore Processor: 32-bit GPP ZPU
DSP TX Chain

- Transmission of samples to the DACs
- FIFO buffer placed in the ext. RAM chip
- DSP TX Core
 - Upsampling - CIC (cascaded integrator-comb)
 - CORDIC-based Num. Ctrl.
 - Oscillator
DSP RX Chain

- Dual operations of the DSP TX Chain
- VITA RX Control block adds timing information
 - Adds control flag if rx samples are delayed
CPU/ZPU

- The on-board CPU controls the functioning of the DSP chains, packet routing and other peripherals.
- It has access to the board devices through I^2C and SPI buses but it does not have direct access to the DSP chain datapath.
- The CPU communicates to the host through UDP packets.
- The CPU can directly access 512 bytes of packet space in the CPU FIFO.
Packet Router RX

The RX packet router inspects packets coming from the Ethernet connection.
Ensures that only packets that match the IP address of the board will be processed.
Sends UDP packets to the ZPU and VITA packets to the DSP TX chain.
Packet Router RX

- The RX packet router inspects packets coming from the Ethernet connection.
- Ensures that only packets that match the IP address of the board will be processed.
- Sends UDP packets to the ZPU and VITA packets to the DSP TX chain.
Conclusions and future work

- Deeper understanding of the USRP2 firmware architecture
- The firmware modularity allows to implement additional features
 - Create new blocks in Verilog
 - Manage input/output connections of existing blocks
- The system architecture needs to deal with the presence of the VITA protocol
- Unexploited resources on the USRP2 FPGA
- 1 MB RAM can be used by the softcore CPU
- New N2XX series provide increased FPGA resources and DSP capabilities

<table>
<thead>
<tr>
<th>Resources</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice Flip-Flops</td>
<td>45%</td>
</tr>
<tr>
<td>4-input Look-Up-Tables</td>
<td>64%</td>
</tr>
<tr>
<td>Occupied Slices</td>
<td>86%</td>
</tr>
<tr>
<td>RAM Blocks</td>
<td>15 available</td>
</tr>
<tr>
<td>MULT 18x18</td>
<td>13 available</td>
</tr>
</tbody>
</table>
Reference

Boot-up process

- Configuration data for the FPGA is typically loaded either from an onboard ROM chip or a FLASH ROM.
- In the USRP2 the boot-up process is controlled by a CPLD (Complex Programmable Logic Device) that performs the initialization process of the SPI interface for a SD card.
- Bits from address 0 on the card are loaded into the FPGA configuration interface†.
- The following bits are the firmware image for the softcore processor if enabled on the FPGA.

†fpga/usrp2/boot_cpld/boot_cpld.v
VITA Radio Transport Protocol

- The USRP2 components communicate with the host PC through the Vita Radio Transport (VRT) standard data transport protocol.
- The purpose of the standard is to provide interoperability for SDR radio applications independent of physical link, and the internal architecture of the radio.
- USRP Firmware implements a standard IF data.

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>32</td>
</tr>
<tr>
<td>Stream Identifier</td>
<td>32</td>
</tr>
<tr>
<td>Integer-second timestamp</td>
<td>32</td>
</tr>
<tr>
<td>Fractional-second timestamp</td>
<td>64</td>
</tr>
<tr>
<td>Data Payload</td>
<td>Word size is 32 bits</td>
</tr>
</tbody>
</table>